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Abstract. We present some novel tools for the analysis of blue-
noise binary patterns. Unlike most of the existing methods that
evaluate the frequency content of a given mask or its lower order
statistics, our new metrics characterize the morphological content of
a mask that is quantified using simple one-pass filtering. An analyti-
cal filter expression is given. As a result, one can balance the struc-
tural content of the mask—diagonal, vertical, and horizontal inter-
connections of the majority (or minority) pixels—at the same level. In
addition, it is possible to improve the overall mask quality by pre-
scribing the occurrence of morphological shapes of connected pix-
els. Examples of morphological analysis are given to demonstrate
the different qualities of blue-noise and white-noise patterns.
© 2003 SPIE and IS&T. [DOI: 10.1117/1.1556766]

1 Introduction

An important issue in blue-noise binary pattern design1–3 is
the use of a quality metric4–6 or error metric, in the opti-
mization process. The choice of metric directly affects
quality of the final patterns.

There are several metrics available that could be use
grade the quality of the binary approximation of the gr
level ~and, respectively, the dithering mask!. However,
none of them completely answers the question, ‘‘What i
good mid-tone level?’’ At both ends of the halfton
scale—at very dark and very light color levels—it is fair
easy to say if some level is ‘‘good’’ or ‘‘bad’’ blue noise
since minority pixels are few and widely spaced. Howev
at gray levels closer to mid-tones, minority pixels are
longer widely spaced and must form connected morp
logical shapes. We propose a morphological analysis
quantify the blue-noise patterns at mid-tones~and over all
gray levels!, as a useful tool for analysis and design.

2 Evaluation of Binary Patterns

A number of evaluation metrics have been proposed to
sess the quality of individual blue-noise binary patter
Two of the commonly used metrics are frequency-weigh
mean square error~FWMSE! and average distance betwe
nearest-neighboring, minority-pixel pairs~AMD !.
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2.1 Frequency-Weighted Mean Square Error

The FWMSE is the most commonly used metric. It is al
referred to as the human visual system weighted, m
square error~HWMSE!, since it employs a model of the
human visual system~HVS! during assessment. If one de
notes b as the binary pattern~dimensionsN3N) to be
evaluated, andh as the point-spread function for the HV
model, the perceived halftone error at the observed levg
could be expressed as:

err5b* h2g, ~1!

where* denotes the circular convolution. Therefore, t
FWMSE could be calculated in both the spatial and
frequency domain as:

FWMSE5
( i 50

N21( j 50
N21uerr2~ i , j !u

N2

5
( i 50

N21( j 50
N21uB~ i , j !u2uH~ i , j !u2

N2 , ~2!

whereB andH stand for the discrete Fourier transform ofb
andh, respectively. The final summation in the Fourier d
main excludes the dc value~the origin point in the referen
coordinate system!, assuming that the expected dc value
simply g.

From Eq.~2! in the Fourier domain, it is clear that th
FWMSE metric evaluates the binary pattern global
Therefore, local details can be averaged out in the eva
tion process.7

2.2 Average Distance Between Nearest-
Neighboring, Minority-Pixel Pairs

Due to the failure of the FWMSE to recognize local cha
acteristics of the binary pattern, Yu4 proposed a method to
quantify the graininess of the pattern, where the AMD w
measured. Namely, for each minority pixel, a search w
conducted for the neighboring minority pixel with the min
mal Euclidean distance to the observed pixel. Wong s
gested a similar approach but with an additional lev
related weighting factor.8 The average of all such distance
is the AMD value:
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AMD5
( i 51

k Dmin~ i !

k
k5g* L, ~3!

where Dmin denotes the minimal distance to the near
neighbor for thei’th minority pixel, andk stands for the
number of minority pixels at the gray levelg in the mask
that generatesL color levels.

When considering two binary patterns that are both c
didates for the gray-level approximation, we should cho
the one with the bigger AMD value~and, consequently, th
less grainy of the two patterns!. The AMD describes the
binary pattern in term of graininess, but it does not rev
the exact nature~morphological shape! or position of a
grainy artifact.

Although generally successful, the FWMSE and AM
~as well as other existing metrics! fail to localize ~and
sometimes even to recognize! problems at the mid-tone lev
els ~output levels between 0.25 and 0.75! where the AMD
is smaller than 2. Our proposed algorithm not only localiz
such problems but also allows the efficient location of
exact position and morphological shape of a pixel ‘‘clum
~see Fig. 1!.

3 Morphology Information Retrieval by Means of
Filtering

In order to extract the morphological information from
certain gray levelg as a result of the filtering process, on
should construct a filter that has a unique response for e
pixel configuration. For simplicity, we show as an examp
a very small filter size~232!. However, since the filter
construction process is generic, larger filters of this ty
could be used as an optimal look-up table~LUT! in a blue-
noise mask~BNM! construction.

3.1 Filter Construction

Consider the binary patternb to be filtered by a rectangula
M3N filter f. The result is described by:

Fig. 1 Dot patterns at output levels of 250 and 130 of white noise
mask (WNM) and blue noise mask (BNM) show that the concepts of
average spacing and clumps or voids are relatively simple at high
levels, but are more complex at middle levels of blue noise.
-

l

h

res~x,y!5 (
m50

M21

(
n50

N21

f ~m,n!•b~x1m,y1n!. ~4!

In order to obtain unique responses for each pixel confi
ration, we propose use ofM3N filter f:

f ~m,n!52m•N1n m50,1,...,M21 n50,1,...,N21. ~5!

Equation~4! can be rewritten now as:

res~x,y!5 (
m50

M21

(
n50

N21

2m•N1n
•b~x1m,y1n!. ~6!

If we recorder b(x1m,y1n) in raster scan order a
b(x1m)N1(y1n) , then Eq.~5! can be rewritten as:

res~x,y!5 (
m50

M21

(
n50

N21

2m•N1n
•b~x1m!•N1~y1n! , ~7!

res~x,y!5 (
k50

M•N21

2k
•b~x•N1y!1k k5m•N1n. ~8!

Since any numberN can be uniquely written in a binary
numeric system as the ordered sum of the powers of 2,
~8! proves that the filter given in Eq.~5! really has unique
response.

3.2 Morphology Information Retrieval

As mentioned before, our proposed metric registers the
sition and the number of horizontal, vertical, and diago
connections between neighboring pixels. Since the in
mation we are interested in is strictly local, the filter do
not have to be larger than 232:

f 5F1 2

4 8G . ~9!

The filter generates 16 possible output levels~values rang-
ing from 0 to 15!, one for each possible pixel configuratio
in a 232 neighborhood~Fig. 2!. Thus, the filter represent
a given pixel configuration as a binary number~i.e., a 4-bit
integer vector!.

Fig. 2 Pixel configurations that are identified by the proposed 232
filter with corresponding unique outputs.
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For example, if 0 represents a white pixel and 1 rep
sents a black pixel, then an ‘‘upper’’ black horizontal co
nection will result in a filter output value of three~11253!.
Thus, the filter output from a binary pattern as shown
Fig. 3 will contain unique numbers corresponding to t
morphology of pixels within a sliding 232 window.

Fig. 3 Illustration showing that in the blue-noise case at around g
5150, there are different shapes (i.e., ‘‘L,’’ checkerboard, diagonal,
etc).
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4 Morphological Characterization Algorithm

The extraction of morphological features using the d
scribed generic filter@see Eq.~5!# can be schematically
represented as a two-step algorithm: the first step be
filtering ~circular convolution or correlation! and the sec-
ond step being result identification~Fig. 4!.

As a result of the filtering process, we have a matrix
the ‘‘morphological content’’ of a filtered binary pattern
Each value uniquely represents the content of the appro
ate sliding window centered at the same pixel position a
the original~binary! pattern. The second step, result iden
fication, is now simple. These values are used as poin
on the LUT with predefined actions for each pixel config
ration. In mathematical morphology this approach is kno
as a hit-or-miss transform.9

For the purpose of calculating the LUT index~pointer!,
the filtering step from Fig. 4 may be replaced by direct u
of the mask binary values. Then3n neighborhood of pro-
cessed pixel may be reordered~vectorized! as binary value
bn221bn222 ...b0 , and that value may be used to index in
LUT. However, our goal is not to merely identify certa
morphological shapes, but also to use results of the p
posed filtering for further mask processing~e.g., relocation
of certain morphological shapes based on their uneven
Fig. 4 General algorithm for the morphological characterization of a binary image.
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Table 1 Level-dependent probabilities for the configuration given in Fig. 1.

Local Configuration Probability Expression

Four white pixels Ew45g4

Any combination of one black and three white pixels Ew3b15(12g)g3

Any combination of two black and two white pixels Ew2b25(12g)2g2

Any combination of three black and one white pixel Ew1b35(12g)3g

Four black pixels Eb45(12g)4
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tial distribution, which can be calculated as spatial distrib
tion of appropriate filtered values!.

5 Metric Analysis

When considering a dithering mask at any given gray le
g, it can be seen~Fig. 2.! that there are a few basic group
of local pixel configurations: zero~all white!, one-pixel,
two-pixel horizontal, and two-pixel vertical and diagon
connections. The L-shaped connection is actually a o
pixel configuration, with reversed minority pixels. Th
number and distribution of these basic configurations
give us information that is not provided by any of the m
rics previously used to evaluate the quality of the individu
BNM.

Using the algorithm described in Fig. 4 withn52 ~a
232 filter!, we can easily extract these features. For
most simple assessment of a binary pattern, the requ
action for each output pixel is to count the number of ea
type of the output values~add up one to the appropriat
counter!. After all the pixels are taken into account, th
sums are averaged to represent the actual distribution~i.e.,
the expectation! of respective 232 configurations.

5.1 White-Noise Mask and Blue-Noise Mask
Analysis

In the case of WNM, at any given gray level the probabil
of any pixel to be turned ‘‘on’’~white! is g, and to be turned
‘‘off’’ ~black! is 12g. Since pixels have independent di
tribution, it is obvious that in any given group of four pix
l

-

d

els, the level-dependent probabilities for the configurat
given in Fig. 1 depend simply on gray levelg. For example,
see Table 1.

The theoretical results in Table 1 are consistent with
actual data collected, where the average was calcul
from a set of experiments using 20 WNMs generated in
pendently~Fig. 5!.

In the case of the BNM, it is clear that the probability
a pixel being turned on or off is not independent of neig
boring pixels. It is dependent on the observed gray leveg
as well as on the arrangement ofall other pixels in the
mask. For that reason, it is not possible to give an ex
mathematical expression for observed distributions of lo
232 pixel configurations.

Due to certain properties of the BNM, we prefer certa
desirable connectivity relationships between pixels. At ea
level in a BNM, the pixels should be placed maximal
distanced to neighboring pixels. This is an attempt to av
some of the previously mentioned configurations at cert
levels. For example, if there is a place to add an isola
minority pixel at a certain level, the new two-pixel conne
tion will be avoided. If there is one predominant type
connection at a certain level~e.g., horizontal versus vertica
connections!, the pattern becomes unbalanced~or visually
less pleasant, perhaps, even disturbing!. In addition, the
number of diagonal connections should be larger than
number of vertical and horizontal connections at any m
ment, since the HVS is more sensitive to the existence
horizontal and vertical lines.

When comparing the plots of a WNM@Fig. 6~c!# and a
Fig. 5 Distribution of all 232 pixel combinations for WNM versus gray level.
Journal of Electronic Imaging / April 2003 / Vol. 12(2) / 281
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typical BNM @Fig. 6~d!#, it is apparent that all of the WNM
distributions are intersecting at one point~output level
128!. That means there are equal numbers of all types
232 configurations present at output levelg50.5. This re-
sults in visually disturbing pixel clumps~all black! and spa-
tial voids ~all white!. In the case of the BNM, the mas
building algorithm tends to arrange minority pixels in ce
tain patterns, resulting in the virtual nonexistence of
black and all white 232 configurations at the middle of th

Fig. 7 Distribution of all 232 pixel combinations for the BNM versus
a gray level (left), and enlarged asymmetrical distributions of the
levels 40 to 100 and 150 to 210 (right). The number keys refer to the
unique morphological shapes shown in Fig. 2.

Fig. 6 Side-by-side comparisons of shape distribution curves for (a)
Bayer’s dither mask, (b) standard error diffusion, (c) WNM, and (d)
BNM. Sharp peaks of distribution curves at some gray levels (espe-
cially simultaneous maximums and minimums) indicate poor conti-
nuity from one gray level to the next [e.g., near 128/255 in (a) and
(b)].
282 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)
f

color scale. Also, the number of L-shaped connections
significantly smaller than the number of any tw
connections at the mid-tone color levels.

From Fig. 7, it is easy to locate the nature of nonop
mality of an analyzed BNM by inspection. In the mas
building process, the original algorithm did not recogni
that the number of horizontal and vertical rods~values 3,
12, 5, and 10 in the morphological content matrix! became
almost the same as the number of diagonal connection~6
and 9! at an output level of 71. That characteristic prop
gated in the mask building process toward the lower par
the gray scale~gray levels:g,71/256). As a consequence
this particular dithering mask is better at the lighter m
tones~output levels in the range of 180 to 220 on this sca!
than at the darker mid-tones~output levels from 35 to 70!.
The particular mask building algorithm used in this ca
failed to produce a completely balanced scale, thus aff
ing the overall dithering mask quality.

An example of this unbalance is given in Fig. 8, whe
two symmetrical gray levels~205 and 50! are compared.
The lighter one appears better, due to better balanced m
phological content. The observed portion of the level 2
@Fig. 7~a!# has 6 vertical, 5 horizontal, and 15 diagon
connections versus 13 vertical, 15 horizontal, and 14 di
onal connections at the same-sized portion of the level
@Fig. 7~b!#. These numbers are consistent with the ma
statistic shown in Figs. 7~a! and 7~b!.

If the information about the unbalance between sy
metrical levels and unbalance in number of vertical, ho
zontal, and diagonal connections were used, the m
building algorithm would produce a better balanced ma
All methods for constructing blue-noise masks empl
quality or goodness criteria, and morphological charac
ization can be included into these criteria. However, the
of this proposed analysis in BNM synthesis is beyond
scope of this work.

6 Conclusions

Some novel tools for dither mask analysis are presente
this work. An analytical filter expression is given, and it
shown that the filter response is unique for each pixel co
bination ~equivalent to a morphological hit-or-miss tran

Fig. 8 An example of unbalanced scale: level 205 has better quality
than its symmetric level (50), since the number of vertically and
horizontally connected minority pixels is better balanced with the
number of diagonally connected ones. To enable visual comparison
between the symmetric levels, minority and majority pixels are in-
verted at the level 50.
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form!. One possible use of this filter is suggested. Its abi
to identify the irregularities is demonstrated.

The analysis described in this work allows for the e
ploitation of certain morphological properties, character
tic in binary patterns, in order to evaluate the quality
mid-tone gray levels. Although the concept presented
been used as an analysis tool, it can be used for the m
phological characterization and validation of a halfto
mask as well as for the control part of the mask synthe
process.

A more complex analysis and synthesis could be e
ployed using the same filter type~but a larger size!. How-
ever, the LUT size grows exponentially as 2nm ~where then
and m filter dimensions aren3m. The strategy for the
utilization of such a filter will be the topic of future re
search.
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