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- 2.1 Frequency-Weighted Mean Square Error
Abstract. We present some novel tools for the analysis of blue-

noise binary patterns. Unlike most of the existing methods that The FWMSE is the most commonly used metric. It is also
evaluate the frequency content of a given mask or its lower order referred to as the human visual system Weighted, mean
statistics, our new metrics characterize the morphological content of square erro(HWMSE), since it employs a model of the

a mask that is quantified using simple one-pass filtering. An analyti- . . _
cal filter expression is given. As a result, one can balance the struc- human visual SySteerVS) du”ng assessment. If one de

tural content of the mask—diagonal, vertical, and horizontal inter- notesb as the binary pattertdimensionsNxXN) to be
connections of the majority (or minority) pixels—at the same level. In evaluated, andh as the point-spread function for the HVS
addition, it is possible to improve the overall mask quality by pre- model, the perceived halftone error at the observed Igvel

scribing the occurrence of morphological shapes of connected pix-
els. Examples of morphological analysis are given to demonstrate
the different qualities of blue-noise and white-noise patterns.
© 2003 SPIE and IS&T. [DOI: 10.1117/1.1556766] err=b*h—g, (1)

could be expressed as:

. whereé® denotes the circular convolution. Therefore, the
1 Introduction FWMSE could be calculated in both the spatial and the

An important issue in blue-noise binary pattern dekidis frequency domain as:
the use of a quality metffc® or error metric, in the opti-

izati i ic di SN N Herr(i,j
mization process. The choice of metric directly affects the FWMSE= —1=0 Z1=0 lerr(i,j)

quality of the final patterns. N2
There are several metrics available that could be used to Ne1aN—Tlm: x121it e 12
grade the quality of the binary approximation of the gray 2o 25 [BALDIAHGL))
level (and, respectively, the dithering maskHowever, - N2 ' 2

none of them completely answers the question, “What is a

good mid-tone level?” At both ends of the halftone whereB andH stand for the discrete Fourier transformtof
scale—at very dark and very light color levels—it is fairly andh, respectively. The final summation in the Fourier do-
easy to say if some level is “good” or “bad” blue noise, main excludes the dc valuéhe origin point in the referent
since minority pixels are few and widely spaced. However, coordinate systeinassuming that the expected dc value is
at gray levels closer to mid-tones, minority pixels are no simply g.

longer widely spaced and must form connected morpho- From Eq.(2) in the Fourier domain, it is clear that the
logical shapes. We propose a morphological analysis toFWMSE metric evaluates the binary pattern globally.
quantify the blue-noise patterns at mid-toriesd over all  Therefore, local details can be averaged out in the evalua-
gray levels, as a useful tool for analysis and design. tion process.

2 Evaluation of Binary Patterns 2.2 Average Distance Between Nearest-

) , Neighboring, Minority-Pixel Pairs
A number of evaluation metrics have been proposed to as- . .
sess the quality of individual blue-noise binary patterns. Pu€ to the failure of the FWMSE to recognize local char-
Two of the commonly used metrics are frequency-weighted aCteristics of the binary pattern, Yproposed a method to
mean square erréFWMSE) and average distance between guantify the graininess of the pattern, where the AMD was

nearest-neighboring, minority-pixel paitaMD). measured. Namely, for each minority pixel, a search was
conducted for the neighboring minority pixel with the mini-

mal Euclidean distance to the observed pixel. Wong sug-
—P 01095 received Anr. 20. 2001 reviced - received Now. 2. 2001 gested a similar approach but with an additional level-
aper receive pr. s , revised manuscript receive ov. 2, ) H H H
accepted for publication Dec. 2. 2002, related weighting factdtThe average of all such distances
1017-9909/2003/$15.00 © 2003 SPIE and IS&T. is the AMD value:
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WNM - level 250 BNM - level 250 M—-1N-1
T T regx,y)= > > f(m,n)-b(x+my+n). (4)
1201 ik s m=0 n=0
e 120-" " L
140} - 1 LT S e In order to obtain unique responses for each pixel configu-
R ' L R ration, we propose use & X N filter f:
1601, .
Lt Lt T 160 " . -
WNM - {evel 130 BNM - level 130 ) _
";-1.,@‘??:3% i ST Equation(4) can be rewritten now as:
-- g P T o ZL0
:sf"*: e preal M—-1 N-1
E- 1. -'E- . . .1:'.& 7 1;"{[" 7 ! B B
: ﬁ%ﬂ SRS reqxy)= > > 2™ N bk my+n). 6)
-E:ii 1-'-#-'.1 1 PR T m=0 n=0
e T e e :
1], T TR Kl w2 i LA E .
If we recorder b(x+m,y+n) in raster scan order as
150 200 120 140 160 (x+m,y+n)

Bx+myn+(y+ny» then Eq.(5) can be rewritten as:
Fig. 1 Dot patterns at output levels of 250 and 130 of white noise

mask (WNM) and blue noise mask (BNM) show that the concepts of M—1 N—1
average spacing and clumps or voids are relatively simple at high m-N+n
levels, but are more complex at middle levels of blue noise. regx,y)= E 2 2 'b(x+ m)-N+(y+n)» (7)
m=0 n=0
sk D i) M-N—1

P . |

=1 — k —
AMD=% k=g*L, 3)  regxy)= IZO 2“by.niy) ek k=m-N+n. €)

where D, denotes the minimal distance to the nearest Since any numbeN can be uniquely written in a binary
neighbor for thei’th minority pixel, andk stands for the ~ numeric system as the ordered sum of the powers of 2, Eq.
number of minority pixels at the gray levglin the mask  (8) proves that the filter given in E¢5) really has unique
that generatek color levels. response.

When considering two binary patterns that are both can- . .
didates for the gray-level approximation, we should choose3-2 Morphology Information Retrieval
the one with the bigger AMD valug@nd, consequently, the As mentioned before, our proposed metric registers the po-
less grainy of the two patterhsThe AMD describes the  sition and the number of horizontal, vertical, and diagonal
binary pattern in term of graininess, but it does not reveal connections between neighboring pixels. Since the infor-
the exact naturémorphological shapeor position of a  mation we are interested in is strictly local, the filter does
grainy artifact. not have to be larger thanx2:

Although generally successful, the FWMSE and AMD
(as well as other existing metricgail to localize (and
sometimes even to recognjzaroblems at the mid-tone lev-
els (output levels between 0.25 and 0)%@here the AMD
is smaller than 2. Our proposed algorithm not only localizes
such problems but also allows the efficient location of the The filter generates 16 possible output leugiglues rang-
exact position and morphological shape of a pixel “clump” ing from 0 to 15, one for each possible pixel configuration
(see Fig. L in a 2Xx2 neighborhoodFig. 2). Thus, the filter represents
a given pixel configuration as a binary numliee., a 4-bit
integer vector.

9

1 2
4 8|

3 Morphology Information Retrieval by Means of

Filtering
In order to extract the morphological information from a H:l FH E
certain gray levef as a result of the filtering process, one
should construct a filter that has a unique response for each 0 | 2 4
pixel configuration. For simplicity, we show as an example Ei m w E
a very small filter size(2X2). However, since the filter 3 3 12 5
construction process is generic, larger filters of this type
could be used as an optimal look-up tatllé&JT) in a blue- El H E u
noise maskKBNM) construction. 10 9 6 14
3.1 Filter Construction 13 11 7 15
ConSier the binary pattglhnto be_f”tered by a rectangular Fig. 2 Pixel configurations that are identified by the proposed 2x2
M XN filter f. The result is described by: filter with corresponding unique outputs.
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BNM - level 150

Fig. 3 lllustration showing that in the blue-noise case at around g
=150, there are different shapes (i.e., “L,” checkerboard, diagonal,
etc).

4 Morphological Characterization Algorithm

The extraction of morphological features using the de-
scribed generic filtefsee Eq.(5)] can be schematically
represented as a two-step algorithm: the first step being
filtering (circular convolution or correlationand the sec-
ond step being result identificatigiig. 4).

As a result of the filtering process, we have a matrix of
the “morphological content” of a filtered binary pattern.
Each value uniquely represents the content of the appropri-
ate sliding window centered at the same pixel position as in
the original(binary) pattern. The second step, result identi-
fication, is now simple. These values are used as pointers
on the LUT with predefined actions for each pixel configu-
ration. In mathematical morphology this approach is known
as a hit-or-miss transforrh.

For the purpose of calculating the LUT indéxointe,
the filtering step from Fig. 4 may be replaced by direct use
of the mask binary values. Thex n neighborhood of pro-

For example, if O represents a white pixel and 1 repre- cessed pixel may be reorderégectorized as binary value
sents a black pixel, then an “upper” black horizontal con- bn2_;bn2_5...0y, and that value may be used to index into

nection will result in a filter output value of thrég&+2=3).

LUT. However, our goal is not to merely identify certain

Thus, the filter output from a binary pattern as shown in morphological shapes, but also to use results of the pro-
Fig. 3 will contain uniqgue numbers corresponding to the posed filtering for further mask processitegg., relocation

morphology of pixels within a sliding 22 window.

of certain morphological shapes based on their uneven spa-

Input binary pattern

Extract sliding n-by-n neighborhood:

b,

n°=2 ne=1

b.

Convert binary, raster ordered neighborhood into its decimal equivalent:

Form resulting matrix element D;:

k=n*-1
2 2k N bk
k=0

] - D,
10

; :
; :
E k=n’-1 E
E @nl_l bnz_z b b] bo )2 - sz ‘bk :
' ho E
: :
) []
v '

...........................................................................

For each pixel D; in resulting matrix D:

Look-up-table

vy oy

Action, Action, Action,

Fig. 4 General algorithm for the morphological characterization of a binary image.
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Table 1 Level-dependent probabilities for the configuration given in Fig. 1.

Local Configuration

Probability Expression

Four white pixels

Any combination of one black and three white pixels
Any combination of two black and two white pixels
Any combination of three black and one white pixel
Four black pixels

szlzg4
Ewspi=(1-9)g°
Euwope=(1-9)*g°
Ewips=(1-09)%g
Ep=(1-9)*

tial distribution, which can be calculated as spatial distribu-
tion of appropriate filtered valugs

5 Metric Analysis

When considering a dithering mask at any given gray level
g, it can be seeffFig. 2, that there are a few basic groups
of local pixel configurations: zergall white), one-pixel,
two-pixel horizontal, and two-pixel vertical and diagonal

connections. The L-shaped connection is actually a one-

pixel configuration, with reversed minority pixels. The

number and distribution of these basic configurations can

give us information that is not provided by any of the met-
rics previously used to evaluate the quality of the individual
BNM.

Using the algorithm described in Fig. 4 with=2 (a
2% 2 filter), we can easily extract these features. For the

els, the level-dependent probabilities for the configuration
given in Fig. 1 depend simply on gray levglFor example,
see Table 1.

The theoretical results in Table 1 are consistent with the
actual data collected, where the average was calculated
from a set of experiments using 20 WNMs generated inde-
pendently(Fig. 5).

In the case of the BNM, it is clear that the probability of
a pixel being turned on or off is not independent of neigh-
boring pixels. It is dependent on the observed gray lgvel
as well as on the arrangement all other pixels in the
mask. For that reason, it is not possible to give an exact
mathematical expression for observed distributions of local
2X2 pixel configurations.

Due to certain properties of the BNM, we prefer certain
desirable connectivity relationships between pixels. At each

most simple assessment of a binary pattern, the requiredeVeI in a BNM, the pixels should be placed maximally

action for each output pixel is to count the number of each
type of the output valuegadd up one to the appropriate
countej. After all the pixels are taken into account, the
sums are averaged to represent the actual distribgitien
the expectationof respective X2 configurations.

5.1 White-Noise Mask and Blue-Noise Mask
Analysis

In the case of WNM, at any given gray level the probability
of any pixel to be turned “on’(white) is g, and to be turned
“off” (black) is 1—g. Since pixels have independent dis-
tribution, it is obvious that in any given group of four pix-

distanced to neighboring pixels. This is an attempt to avoid
some of the previously mentioned configurations at certain
levels. For example, if there is a place to add an isolated
minority pixel at a certain level, the new two-pixel connec-
tion will be avoided. If there is one predominant type of
connection at a certain levéd.g., horizontal versus vertical
connectiong the pattern becomes unbalanded visually
less pleasant, perhaps, even disturhiig addition, the
number of diagonal connections should be larger than the
number of vertical and horizontal connections at any mo-
ment, since the HVS is more sensitive to the existence of
horizontal and vertical lines.

When comparing the plots of a WNIFig. 6(c)] and a

WNM - average of 30 tests WNM theoretical
1 1
0.8 0.8
£ 2
Zos Zos
g g
so-_0.4 50.4
0.2 0.2
Euwonz
50 100 150 200 250 50 100 150 200 250
gray level gray level

Fig. 5 Distribution of all 2X2 pixel combinations for WNM versus gray level.
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Bayer’s dither ; Error Diffusion
1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0 50 100 150 200 250 50 100 150 200 250
(a) (b)
WNM BNM
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0

50 100 150 200 250
(@

50 100 150 200 250
(c)

Fig. 6 Side-by-side comparisons of shape distribution curves for (a)
Bayer’s dither mask, (b) standard error diffusion, (c) WNM, and (d)
BNM. Sharp peaks of distribution curves at some gray levels (espe-
cially simultaneous maximums and minimums) indicate poor conti-
nuity from one gray level to the next [e.g., near 128/255 in (a) and

(b)].

typical BNM [Fig. 6(d)], it is apparent that all of the WNM
distributions are intersecting at one poifdutput level
128). That means there are equal numbers of all types of
2% 2 configurations present at output legt 0.5. This re-
sults in visually disturbing pixel clump@&ll black and spa-

tial voids (all white). In the case of the BNM, the mask
building algorithm tends to arrange minority pixels in cer-
tain patterns, resulting in the virtual nonexistence of all
black and all white X2 configurations at the middle of the

BNM Enlarged
1
G\
09 0.2
08
0.1
o7 =
LS
EO.G s Q 0
3 160 180 200 220
805 a) good
S04 pal
0.2
0.3 ,w
7000304 W
02 ' 0.1
0.1 302310
0 0
50 100 1500. 250 50 100
gray level b) bad

Fig. 7 Distribution of all 2X2 pixel combinations for the BNM versus
a gray level (left), and enlarged asymmetrical distributions of the
levels 40 to 100 and 150 to 210 (right). The number keys refer to the
unique morphological shapes shown in Fig. 2.
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Fig. 8 An example of unbalanced scale: level 205 has better quality
than its symmetric level (50), since the number of vertically and
horizontally connected minority pixels is better balanced with the
number of diagonally connected ones. To enable visual comparison
between the symmetric levels, minority and majority pixels are in-
verted at the level 50.

color scale. Also, the number of L-shaped connections is
significantly smaller than the number of any two-
connections at the mid-tone color levels.

From Fig. 7, it is easy to locate the nature of nonopti-
mality of an analyzed BNM by inspection. In the mask
building process, the original algorithm did not recognize
that the number of horizontal and vertical rogslues 3,

12, 5, and 10 in the morphological content matidecame
almost the same as the number of diagonal connecti®ns
and 9 at an output level of 71. That characteristic propa-
gated in the mask building process toward the lower part of
the gray scalégray levels:;g<71/256). As a consequence,
this particular dithering mask is better at the lighter mid-
tones(output levels in the range of 180 to 220 on this sgale
than at the darker mid-tonésutput levels from 35 to 70
The particular mask building algorithm used in this case
failed to produce a completely balanced scale, thus affect-
ing the overall dithering mask quality.

An example of this unbalance is given in Fig. 8, where
two symmetrical gray level$205 and 50 are compared.
The lighter one appears better, due to better balanced mor-
phological content. The observed portion of the level 205
[Fig. 7(@] has 6 vertical, 5 horizontal, and 15 diagonal
connections versus 13 vertical, 15 horizontal, and 14 diag-
onal connections at the same-sized portion of the level 50
[Fig. 7(b)]. These numbers are consistent with the mask
statistic shown in Figs. (@ and 7b).

If the information about the unbalance between sym-
metrical levels and unbalance in number of vertical, hori-
zontal, and diagonal connections were used, the mask
building algorithm would produce a better balanced mask.
All methods for constructing blue-noise masks employ
quality or goodness criteria, and morphological character-
ization can be included into these criteria. However, the use
of this proposed analysis in BNM synthesis is beyond the
scope of this work.

6 Conclusions

Some novel tools for dither mask analysis are presented in
this work. An analytical filter expression is given, and it is
shown that the filter response is unique for each pixel com-
bination (equivalent to a morphological hit-or-miss trans-
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form). One possible use of this filter is suggested. Its ability

to identify the irregularities is demonstrated.

The analysis described in this work allows for the ex-
ploitation of certain morphological properties, characteris-
tic in binary patterns, in order to evaluate the quality of
mid-tone gray levels. Although the concept presented has
been used as an analysis tool, it can be used for the mor
phological characterization and validation of a halftone
mask as well as for the control part of the mask synthesis|

process.

Vladmir Misic received his BS degree in
electrical engineering from the University of
Novi Sad, Yugoslavia, in 1995, and his MS
degree in electrical and computer engi-
neering from the University of Rochester in
1999. He is currently a PhD candidate at
the ECE Department, University of Roch-
ester, with a concentration in signal pro-
cessing. He is a visiting professor of com-
puter science at the Rochester Institute of
Technology. His research interests include
digital halftoning, image enhancement, color image processing, and

Po—

=

A more complex analysis and synthesis could be em-image compression algorithms.

ployed using the same filter tygbut a larger size How-
ever, the LUT size grows exponentially a¥"™Xwhere then

and m filter dimensions areaxXm. The strategy for the
utilization of such a filter will be the topic of future re-

search.
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